Differences in metabolomic profiles of male db/db and s/s, leptin receptor mutant mice.

نویسندگان

  • Nadia Saadat
  • Heidi B IglayReger
  • Martin G Myers
  • Peter Bodary
  • Smiti V Gupta
چکیده

Leptin, a protein hormone secreted by adipose tissue, plays an important role in regulating energy metabolism and the immune response. Despite similar extremes of adiposity, mutant mouse models, db/db, carrying spontaneous deletion of the active form of the leptin receptor (LEPR-B) intracellular signaling domain, and the s/s, carrying a specific point mutation leading to a dysfunctional LEPR-B-STAT3 signaling pathway, have been shown to have robust differences in glucose homeostasis. This suggests specific effects of leptin, mediated by non-STAT3 LEPR-B pathways. Differences in the LEPR-B signaling pathways in these two LEPR-B mutant mice models are expected to lead to differences in metabolism. In the current study, the hypothesized differences in metabolism were investigated using the metabolomics approach. Proton nuclear magnetic resonance spectroscopy ((1)HNMR) was conducted on 24 h urine samples in deuterium oxide using a 500 MHz instrument at 25°C. Principle Component Analysis showed clear separation of urine NMR spectra between the groups (P < 0.05). The CHENOMX metabolite database was used to identify several metabolites that differed between the two mouse models. Significant differences (P < 0.05) in metabolites associated with the glycine, serine, and homocysteine metabolism were observed. The results demonstrate that the metabolomic profile of db/db and s/s mice are fundamentally different and provide insight into the unique metabolic effects of leptin exerted through non-STAT3 LEPR-B pathways.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

LRb-STAT3 signaling is required for the neuroendocrine regulation of energy expenditure by leptin.

Secretion of leptin from adipose tissue communicates body energy status to the neuroendocrine system by activating the long form of the leptin receptor (LRb). Lack of leptin or LRb (as in db/db mice) results in obesity that stems from the combined effects of hyperphagia and decreased energy expenditure. We have previously generated mice in which LRb is replaced with a mutant LRb (LRbS1138) that...

متن کامل

Metabolic responses to leptin in obese db/db mice are strain dependent.

Obese, diabetic C57BL/Ks db/db mice that lack the long-form leptin receptor exhibit no decrease in body weight or food intake when treated with leptin. Here we compared responses to leptin in two strains of db/db mice: C57BL/6J mice that are hyperglycemic and hyperinsulinemic and C57BL/Ks that are hyperglycemic and normo- or hypoinsulinemic. Chronic intraperitoneal infusion of 10 microgram lept...

متن کامل

Role of leptin receptor-induced STAT3 signaling in modulation of intestinal and hepatic inflammation in mice.

Leptin-deficient ob/ob mice are resistant to dextran sulfate sodium (DSS)-induced colitis and Concanavalin A (Con A)-induced hepatitis. However, the signal transduction pathways involved have not been identified. The present study investigated the effect of leptin-induced STAT3 signaling in the DSS and Con A models. Mice carrying a leptin receptor (LEPR) gene mutant for Y1138 (s/s mice), with a...

متن کامل

Leptin regulates neointima formation after arterial injury through mechanisms independent of blood pressure and the leptin receptor/STAT3 signaling pathways involved in energy balance.

BACKGROUND Leptin is an adipocyte-derived hormone critical for energy homeostasis and implicated in vascular disease processes. The relevant cellular leptin receptor pools and signaling pathways involved in leptin-related vascular phenotypes in vivo are unclear. METHODS AND RESULTS Arterial injury was induced in wild-type (wt), leptin-deficient (lep(ob/ob)), and leptin receptor-deficient (lep...

متن کامل

Hydrogen sulfide improves vessel formation of the ischemic adductor muscle and wound healing in diabetic db/db mice

Objective(s): It has been demonstrated that hydrogen sulfide plays a vital role in physiological and pathological processes such as regulating inflammation, oxidative stress, and vessel relaxation. The aim of the study was to explore the effect of hydrogen sulfide on angiogenesis in the ischemic adductor muscles of type 2 diabetic db/db mice and ischemic diabetic wound...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Physiological genomics

دوره 44 6  شماره 

صفحات  -

تاریخ انتشار 2012